Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng-Yi Li, ${ }^{\text {a,c }}$ Da-Qing Shi, ${ }^{\text {b,c* }}$ Chun-Ling Shic and
Guo-Lan Douc

${ }^{\text {a }}$ Xuzhou Medical College, Xuzhou 221002, People's Republic of China, People's Republic of China, ${ }^{\text {b }}$ The Key Laboratory of Biotechnology for Medical Plants of, Jiangsu Province, Xuzhou 221116, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.115$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3a-trans-1,3a-cis-1,2-Bis(4-chlorophenyl)-1', $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ -trihydro-3a-hydroxybenzo[e]bicyclo[3.3]octane3 -spiro- 2^{\prime}-indene- $\mathbf{1}^{\prime}$-one acetone solvate

The title compound, $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, was synthesized by the dimerization of 2-(4-chlorobenzal)inden-1-one, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. X-ray analysis reveals that the cyclopentane ring spiro-fused to the fivemembered ring adopts an envelope conformation, while the other cyclopentane ring adopts an envelope conformation.

Comment

The spiro[4.4]nonane skeleton has been found in many compoundss for highly enantioselective hydrogenation (Lin et al., 2004). Compounds containing the spiro[4.4]nonane skeleton show the following biological activities: anticonvulsant (Obniska \& Zagorska, 2003) and potent plateletactivating factor (PAF) antagonist (Obitsu et al., 2003). Lowvalent titanium reagents have an exceedingly high ability to promote the reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993, 1997, 1998, 2003). We report here the synthesis and the crystal structure of the title compound, (I).

In the title molecule, the cyclopentane ring ($\mathrm{C} 1-\mathrm{C} 5$) is the new ring formed by dimerization of 2-(4-chlorobenzal)inden1 -one, induced by the low-valent titanium reagent. This ring adopts an envelope conformation; atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4$ and C 5 are coplanar, while atom C3 deviates from this plane by 0.705 (1) \AA. There are two cyclopentane rings in the molecule; one ($\mathrm{C} 5-\mathrm{C} 8 / \mathrm{C} 1$) adopts an envelope conformation, with atom C6 deviating from the plane defined by $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 5 / \mathrm{C} 1$ by 0.065 (3) \AA, and the other (C2/C9-C12) adopts an envelope conformation, with C 2 deviating from the plane defined by $\mathrm{C} 9 /$ $\mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 12$ by 0.337 (3) \AA. The dihedral angle between the two 4-chlorophenyl rings is 83.1 (1) ${ }^{\circ}$.

In the crystal structure, the classical intermolecular hydrogen bond $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2(-x+2,-y+1,-z+1)$ and the weak interactions $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ and $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 3$ connect adjacent molecules (Fig. 2 and Table 2).

Received 18 July 2005 Accepted 22 July 2005 Online 27 July 2005

Experimental

The title compound was prepared by the reaction of 2-(4-chloro-benzal)inden-1-one ($1.28 \mathrm{~g}, 5 \mathrm{mmol}$) induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$ (yield 46%, m.p. $\left.462-463 \mathrm{~K}\right)$. IR: $3375(\mathrm{OH})$, 1692 (CO), 1605, 1493, 1465, 850, 829, 763, 750 (phenyl ring); ${ }^{1} \mathrm{H}$ NMR: $\delta 2.17\left(6 \mathrm{H}, s, 2 \mathrm{CH}_{3}\right), 2.23\left(1 \mathrm{H}, d, J=16.8 \mathrm{~Hz}, \mathrm{C}^{3^{\prime}}-\mathrm{H}\right), 2.68$ $\left(1 \mathrm{H}, d, J=16.8 \mathrm{~Hz}, \mathrm{C}^{3^{\prime}}-\mathrm{H}\right), 2.77-2.84\left(1 \mathrm{H}, m, \mathrm{C}^{6}-\mathrm{H}\right), 2.98-3.03(1 \mathrm{H}$, $\left.m, \mathrm{C}^{6}-\mathrm{H}\right), 3.26-3.32\left(1 \mathrm{H}, m, \mathrm{C}^{5}-\mathrm{H}\right), 3.68\left(1 \mathrm{H}, d d, J_{1}=12.8 \mathrm{~Hz}, J_{2}=\right.$ $\left.8.4 \mathrm{~Hz}, \mathrm{C}^{4}-\mathrm{H}\right), 4.73\left(1 \mathrm{H}, d, J=12.8 \mathrm{~Hz}, \mathrm{C}^{3}-\mathrm{H}\right), 5.85(1 \mathrm{H}, s, \mathrm{OH})$, $6.10(1 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.75(1 \mathrm{H}, t, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 6.98(1 \mathrm{H}$, $d, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.14-7.24(4 \mathrm{H}, m, \mathrm{ArH}), 7.29-7.38(5 \mathrm{H}, m, \mathrm{ArH})$, $7.46(1 \mathrm{H}, t, J=7.2 \mathrm{~Hz}, \mathrm{ArH}), 7.53(2 \mathrm{H}, d, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.67(1 \mathrm{H}$, $d, J=7.2 \mathrm{~Hz}, \mathrm{ArH})$. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether/acetone solution (5:1 v / v).

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	$Z=2$
$M_{r}=569.49$	$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.1669$ (16) £	Cell parameters from 5464
$b=10.9425$ (16) A	reflections
$c=13.6510$ (12) \AA	$\theta=3.2-25.3^{\circ}$
$\alpha=74.001$ (10) ${ }^{\circ}$	$\mu=0.26 \mathrm{~mm}^{-1}$
$\beta=77.008(11)^{\circ}$	$T=193$ (2) K
$\gamma=88.039(13)^{\circ}$	Block, colorless
$V=1421.9$ (3) \AA^{3}	$0.30 \times 0.25 \times 0.11 \mathrm{~mm}$
Data collection	
Rigaku Mercury CCD diffractometer	5185 independent reflections 4293 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.027$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.4^{\circ}$
(Jacobson, 1998)	$h=-12 \rightarrow 10$
$T_{\text {min }}=0.925, T_{\text {max }}=0.972$	$k=-13 \rightarrow 13$
14209 measured reflections	$l=-16 \rightarrow 16$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$	+ 0.4952P]
$w R\left(F^{2}\right)=0.115$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.08$	$(\Delta / \sigma)_{\text {max }}=0.001$
5185 reflections	$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{\AA^{-3}}$
365 parameters	$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{\AA^{-3}}$
H -atom parameters constrained	

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.424(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.545(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.221(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.540(2)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.557(3)$	$\mathrm{C} 4-\mathrm{C} 23$	$1.503(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.592(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.544(3)$
$\mathrm{C} 2-\mathrm{C} 9$	$1.527(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.542(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8$	$108.60(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$103.04(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$110.31(14)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$115.13(15)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2$	$103.78(14)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$107.08(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$101.42(14)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 2$	$103.96(14)$
$\mathrm{C} 17-\mathrm{C} 3-\mathrm{C} 4$	$117.06(15)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$-32.57(19)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$-114.72(16)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-31.62(16)$	$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$126.95(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12$	$-146.72(15)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 4$	$4.94(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-44.07(16)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-122.99(17)$
$\mathrm{C} 23-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-90.6(2)$	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-4.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$142.73(16)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 32$	$55.5(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$23.83(18)$		

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Figure 2
A molecular packing diagram of (I). Hydrogen-bonding interactions are shown as dashed lines.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{OB}^{\mathrm{i}}$	1.00	2.51	$3.495(3)$	167
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 3 \cdots \mathrm{O}^{1 i}$	1.00	2.50	$3.445(2)$	158
$\mathrm{O}^{\text {1i }}-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.84	1.99	$2.8213(19)$	168

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x+2,-y+1,-z+1$.

H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

organic papers

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 03 KJB150136), for financial support.

References

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.

Lin, C. W., Lin, C. C., Lam, L. F. L., Au, Y. T. T. L. \& Chan, A. S. C. (2004). Tetrahedron Lett. 45, 7379-7381.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Obitsu, K., Makii, T., Hashizume, Y., Maki, S., Hirano, T. \& Niwa, H. (2003), Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 43, 509-514
Obniska, J. \& Zagorska, A. (2003). Farmaco, 58, 1227-1234.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan
Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.
Shi, D. Q., Lu, Z. S., Mu, L. L. \& Dai G. Y. (1998). Synth. Commun. 28, 10731078.

Shi, D. Q., Mu, L. L., Lu, Z. S. \& Dai, G. Y. (1997). Synth. Commun. 27, 41214129.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

